#### References

- CONDE, A., LÓPEZ-CASTRO, A. & MÁRQUEZ, R. (1978). Rev. Iberoam. Cristalogr. Miner. Metalogen, 1, 23–36.
- CREMER, D. & POPLE. J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- FERNÁNDEZ-BOLAÑOS, J., FUENTES-MOTA, J., BARRAGÁN PERÉZ, I. & PRADERA DE FUENTES, M. A. (1978). An. Quím. 74, 336–338.
- FERNÁNDEZ-BOLAÑOS, J., FUENTES-MOTA, J. & FERNÁNDEZ-BOLAÑOS GUZMÁN, J. (1982). In preparation.
- HANESSIAN, S. & PERNET, A. G. (1976). Adv. Carbohydr. Chem. Biochem. 33, 111–118.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- MAIN, P., LESSINGER, L., HULL, S. E., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Determination of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MURRAY-RUST, P. & MOTHERWELL, S. (1978). Acta Cryst. B34, 2534-2546.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- SUNDARALINGAM, M. (1969). Biopolymers, 7, 821-860.
- WEITZEL, G., SCHNEIDER, F., GUGLIELMI, J., SANDER, J., DURST, J. & HIRSCHMANN, W. D. (1966). Hoppe-Seyler's Z. Physiol. Chem. 346, 208-223.

Acta Cryst. (1983). C39, 125–128

## Structure of 6,7-Dimethyl-4a $\beta$ ,5,8,8a $\beta$ -tetrahydronaphthoquin-1 $\alpha$ ,4 $\alpha$ -diol,\* C<sub>12</sub>H<sub>18</sub>O<sub>2</sub>

By Anthony S. Secco and James Trotter

### Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Y6

(Received 9 August 1982; accepted 1 October 1982)

Abstract.  $M_r = 194.28$ , monoclinic,  $P2_1/c$ , a = 13.870 (2), b = 18.025 (4), c = 9.236 (1) Å,  $\beta = 108.098$  (6)°, V = 2194.9 (6) Å<sup>3</sup>, Z = 8,  $D_x = 1.176$ ,  $D_o$  (flotation) = 1.179 g cm<sup>-3</sup>, T = 295 K, F(000) = 848,  $\mu$ (Mo  $K\alpha$ ) = 0.436 cm<sup>-1</sup>,  $\lambda = 0.71073$  Å, R = 0.032 for 1461 observed data. Extensive hydrogen bonding links molecules in a three-dimensional network, with disorder of one of the hydroxyl H atoms. A structural comparison of the present compound with conformationally similar tetrahydronaphthoquinols is presented.

Introduction. Obtaining single crystals for X-ray diffraction work has in many cases been the determining factor in whether or not the solid-state structure is solved. This limitation has led to a project of investigating solid-state structures by <sup>13</sup>C NMR spectroscopy. McDowell, Naito, Scheffer & Wong (1981) have illustrated some advantages of this technique over X-ray structure analysis in their work on conformational analysis of tetrahydronaphthoquinones.

McDowell *et al.* have shown that for the tetrahydronaphthoquinones, where chemically equivalent C atoms appear as singlets in solution, doublets appear in the solid state. This is attributed to the slight environmental differences experienced by the C atoms in the solid state. It was proposed that this discriminating feature of the solid state could be exploited in identifying structurally independent molecules whose <sup>13</sup>C NMR spectra should be readily discernible.

Although the characterization of the two structurally independent molecules of unsubstituted  $4a\beta$ , 5, 8, 8a\betatetrahydro-1,4-naphthoquinone in the solid state was successful, such was not the case for the present compound (I). The multitude of peaks in the <sup>13</sup>C NMR spectrum suggested more than one independent molecule in the structure but the evidence did not unambiguously indicate the exact number.



This crystallographic analysis was undertaken in an effort (i) to establish the number of structurally independent molecules, (ii) to establish their individual conformations and if they differed from each other and (iii) to verify the isomer (with respect to the OH positions) present. Of additional interest crystallographically was how the present, fully reduced structure compared with derivatives of  $4a\beta$ ,5,8,8a $\beta$ -tetrahydro-1-naphthoquin-4 $\alpha$ -ol.

© 1983 International Union of Crystallography

<sup>\*</sup> IUPAC name: 6,7-dimethyl- $1,4,4a\beta,5,8,8a\beta$ -hexahydronaphthalene- $1\alpha,4\alpha$ -diol.

**Experimental.** Crystals from hexanone/*n*-hexane,  $0.52 \times 0.15 \times 0.10$  mm, CAD-4 diffractometer. graphite-monochromatized **Μο** *Κ*α radiation.  $\theta \leq 22.5^{\circ}, \omega - 2\theta$  scan,  $\omega$  scan width (0.65 + $0.35 \tan\theta$ ° extended 25% on each side for background measurement, horizontal aperture  $(2.00 + \tan\theta)$  mm, vertical aperture 4 mm. Lp corrections, 2845 reflections, 1461 (51.4%) with  $I \ge 3\sigma(I)$ , where  $\sigma^2(I) =$  $S + 2B + [0.04(S - B)]^2$ , S = scan count, B = timeaveraged background count.

The structure was solved by MULTAN and refined by full-matrix least squares, H atoms from a difference synthesis, H(O1) and H(O1') each disordered over two positions with 0.50 occupancy. Final R = 0.032,  $R_{\rm m} = 0.035$  for 1461 data, R = 0.104 for all data,  $w = 1/\sigma^2(F)$ , GOF = 1.62,  $\pm 0.12 \text{ e}\text{\AA}^{-3}$  in final difference synthesis, atomic scattering factors from Cromer & Mann (1968) and Stewart, Davidson & Simpson (1965). The computer programs used include locally written programs for data processing and locally modified versions of the following: MULTAN 80 (Main, Woolfson, Lessinger, Germain & Declercq, 1980); ORFLS (Busing, Martin & Levy, 1962); ORFFE (Busing, Martin & Levy, 1964); FORDAP (A. Zalkin); and ORTEP II (Johnson, 1976).

Discussion. Positional and isotropic thermal parameters are given in Table 1.\*

\* Lists of structure factors, anisotropic thermal parameters, bond distances and angles involving hydrogen atoms, torsion angles and a packing diagram have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38151 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### Table 1. Final positional (fractional $\times 10^4$ , H $\times 10^3$ ) and isotropic thermal parameters $(U \times 10^3 \text{ Å}^2)$ , with estimated standard deviations in parentheses

Unprimed atoms correspond to molecule A; primed atoms correspond to molecule B.

 $U_{eq}$  is equal to one third the trace of the diagonalized anisotropic temperature-factor matrix.

|                | x         | у        | z         | $U_{\rm eq}/U$ |
|----------------|-----------|----------|-----------|----------------|
| C(1)           | 2331 (3)  | 1126 (2) | 3501 (3)  | 49             |
| $\tilde{C}(2)$ | 1501 (3)  | 952 (2)  | 2067 (4)  | 55             |
| Č(3)           | 647 (3)   | 1320 (2) | 1581 (4)  | 49             |
| C(4)           | 407 (2)   | 1964 (2) | 2409 (3)  | 41             |
| C(4a)          | 972 (2)   | 1922 (2) | 4103 (3)  | 35             |
| C(5)           | 585 (3)   | 1330 (2) | 4946 (3)  | 43             |
| C(6)           | 1287 (3)  | 1165 (2) | 6529 (3)  | 46             |
| C(61)          | 789 (5)   | 715 (3)  | 7482 (5)  | 74             |
| C(7)           | 2242 (3)  | 1393 (2) | 7001 (3)  | 48             |
| C(71)          | 2973 (4)  | 1236 (3) | 8559 (5)  | 78             |
| C(8)           | 2706 (3)  | 1837 (2) | 6001 (4)  | 53             |
| C(8a)          | 2099 (2)  | 1816 (2) | 4315 (3)  | 41             |
| O(1)           | 2539 (3)  | 489 (1)  | 4464 (3)  | 70             |
| O(4)           | -676 (2)  | 1997 (1) | 2042 (2)  | 51             |
| C(1')          | -4175 (2) | 801 (2)  | -2861 (3) | 42             |
| C(2')          | -3370 (3) | 668 (2)  | -1378 (4) | 51             |

#### Table 1 (cont.)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | x                  | у                | z                   | $U_{\rm eq}/U_{\rm iso}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|------------------|---------------------|--------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(3')            | -2615(3)           | 1128 (2)         | 783 (4)             | 49                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4')            | -2493 (2)          | 1851 (2)         | -1491 (3)           | 39                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4a')           | -3013(2)           | 1848 (2)         | -3194 (3)           | 35                       |
| $\begin{array}{cccccc} C(6') & -3095 (2) & 1254 (2) & -5716 (3) & 42 \\ C(61') & -2490 (4) & 954 (3) & -6685 (5) & 63 \\ C(7') & -4084 (3) & 1376 (2) & -6224 (3) & 45 \\ C(71') & -4730 (4) & 1264 (3) & -7862 (5) & 78 \\ C(8') & -4673 (3) & 1637 (2) & -5200 (4) & 51 \\ C(8') & -4107 (2) & 1574 (2) & -3508 (3) & 40 \\ O(1') & -4148 (3) & 199 (1) & -3851 (3) & 49 \\ O(4') & -1440 (2) & 2046 (1) & -1162 (3) & 51 \\ H(1) & 299 (2) & 122 (1) & 326 (3) & 49 (8) \\ H(2) & 160 (2) & 53 (2) & 154 (4) & 67 (10) \\ H(3) & 12 (2) & 121 (2) & 68 (3) & 56 (9) \\ H(4) & 62 (2) & 242 (1) & 209 (3) & 35 (8) \\ H(4a) & 91 (2) & 239 (1) & 454 (3) & 32 (7) \\ H1(5) & -9 (2) & 145 (2) & 503 (3) & 63 (10) \\ H2(5) & 44 (2) & 85 (1) & 438 (3) & 36 (7) \\ H1(61) & 27 (4) & 98 (3) & 770 (6) & 167 (24) \\ H2(61) & 133 (4) & 61 (2) & 834 (6) & 135 (21) \\ H3(61) & 52 (4) & 26 (3) & 702 (6) & 151 (23) \\ H1(71) & 337 (3) & 84 (2) & 850 (4) & 95 (15) \\ H2(71) & 271 (3) & 115 (2) & 937 (4) & 87 (14) \\ H3(71) & 343 (3) & 169 (3) & 889 (5) & 127 (19) \\ H1(8) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(01) & -85 (2) & 235 (2) & 634 (3) & 72 (11) \\ H3(8) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(16) & -85 (2) & 235 (2) & 206 (11 (3) & 73 (11) \\ H(3') & -208 (3) & 99 (2) & 12 (4) & 73 (11) \\ H(4') & -283 (2) & 236 (1) & -356 (3) & 32 (7) \\ H1(6') & -286 (3) & 68 (2) & -750 (4) & 96 (14) \\ H2(61') & -200 (3) & 60 (2) & -609 (5) & 112 (18) \\ H3(61') & -212 (3) & 130 (2) & -695 (5) & 118 (17) \\ H1(7') & -374 (8) & 13 (6) & -823 (6) & 145 (27) \\ H3(71') & -520 (4) & 85 (3) & -794 (5) & 146 (19) \\ H1(8') & -433 (2) & 173 (2) & -546 (3) & 59 (9) \\ H2(8') & -332 (3) & 133 (2) & -547 (3) & 73 (10) \\ H(8a') & -443 (2) & 193 (2) & -292 (3) & 56 (8) \\ H(O1') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(O1') & -151 (3) & 203 (2) & -10 (5) & 107 (15) \\ \end{array}$                                                                                                          | C(5')            | -2470(2)           | 1398 (2)         | -4087 (3)           | 38                       |
| $\begin{array}{cccccc} C(61') & -2490 (4) & 954 (3) & -6685 (5) & 63 \\ C(7') & -4084 (3) & 1376 (2) & -6224 (3) & 45 \\ C(71') & -4730 (4) & 1264 (3) & -7862 (5) & 78 \\ C(8') & -4673 (3) & 1637 (2) & -5200 (4) & 51 \\ C(8a') & -4107 (2) & 1574 (2) & -3508 (3) & 40 \\ O(1') & -4148 (3) & 199 (1) & -3851 (3) & 49 \\ O(4') & -1440 (2) & 2046 (1) & -1162 (3) & 51 \\ H(1) & 299 (2) & 122 (1) & 326 (3) & 49 (8) \\ H(2) & 160 (2) & 53 (2) & 154 (4) & 67 (10) \\ H(3) & 12 (2) & 121 (2) & 68 (3) & 56 (9) \\ H(4a) & 91 (2) & 239 (1) & 454 (3) & 32 (7) \\ H1(5) & -9 (2) & 145 (2) & 503 (3) & 63 (10) \\ H2(5) & 44 (2) & 85 (1) & 438 (3) & 36 (7) \\ H1(61) & 27 (4) & 98 (3) & 770 (6) & 167 (24) \\ H2(61) & 133 (4) & 61 (2) & 834 (6) & 135 (21) \\ H3(61) & 52 (4) & 26 (3) & 702 (6) & 151 (23) \\ H1(71) & 337 (3) & 84 (2) & 850 (4) & 95 (15) \\ H2(71) & 271 (3) & 115 (2) & 937 (4) & 87 (14) \\ H3(71) & 343 (3) & 169 (3) & 889 (5) & 127 (19) \\ H1(8) & 278 (2) & 235 (2) & 634 (3) & 72 (11) \\ H2(8) & 337 (2) & 165 (2) & 611 (3) & 73 (11) \\ H(28) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(01)^{\bullet} & -484 (2) & 74 (1) & -275 (3) & 38 (8) \\ H(2') & -342 (2) & 19 (2) & -90 (3) & 69 (11) \\ H(4') & -283 (2) & 235 (2) & 654 (3) & 32 (7) \\ H1(5') & -189 (2) & 165 (2) & -412 (3) & 49 (9) \\ H2(5') & -208 (3) & 99 (2) & 12 (4) & 73 (11) \\ H(4') & -283 (3) & 2226 (1) & -110 (3) & 44 (8) \\ H(4a') & -306 (2) & 238 (1) & -356 (3) & 32 (7) \\ H1(5') & -189 (2) & 165 (2) & -412 (3) & 49 (9) \\ H2(5') & -222 (2) & 90 (1) & -360 (3) & 26 (7) \\ H1(6') & -286 (3) & 68 (2) & -750 (4) & 96 (14) \\ H2(61') & -200 (3) & 60 (2) & -695 (5) & 118 (17) \\ H1(7') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -1374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -1374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -115 (3) & 203 (2) & -10 (5) & 107 (15) \\ \end{array}$                                                                                             | C(6')            | -3095(2)           | 1254 (2)         | -5716 (3)           | 42                       |
| $\begin{array}{cccccc} C(7)' & -4084 (3) & 1376 (2) & -6224 (3) & 45 \\ C(71') & -4730 (4) & 1264 (3) & -7862 (5) & 78 \\ C(8') & -4673 (3) & 1637 (2) & -5200 (4) & 51 \\ C(8a') & -4107 (2) & 1574 (2) & -3508 (3) & 40 \\ O(1') & -1448 (3) & 199 (1) & -3851 (3) & 49 \\ O(4') & -1440 (2) & 2046 (1) & -1162 (3) & 51 \\ H(1) & 299 (2) & 122 (1) & 326 (3) & 49 (8) \\ H(2) & 160 (2) & 53 (2) & 154 (4) & 67 (10) \\ H(3) & 12 (2) & 121 (2) & 68 (3) & 56 (9) \\ H(4) & 62 (2) & 242 (1) & 209 (3) & 35 (8) \\ H(4a) & 91 (2) & 239 (1) & 454 (3) & 32 (7) \\ H1(5) & -9 (2) & 145 (2) & 503 (3) & 63 (10) \\ H2(5) & 44 (2) & 85 (1) & 438 (3) & 36 (7) \\ H1(61) & 27 (4) & 98 (3) & 770 (6) & 167 (24) \\ H2(61) & 133 (4) & 61 (2) & 834 (6) & 135 (21) \\ H3(61) & 52 (4) & 26 (3) & 702 (6) & 151 (23) \\ H1(71) & 337 (3) & 84 (2) & 850 (4) & 95 (15) \\ H2(71) & 271 (3) & 115 (2) & 937 (4) & 87 (14) \\ H3(71) & 343 (3) & 169 (3) & 889 (5) & 127 (19) \\ H1(8) & 278 (2) & 235 (2) & 634 (3) & 72 (11) \\ H2(8) & 337 (2) & 165 (2) & 611 (3) & 73 (11) \\ H(28) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(01) & 247 (9) & 49 (6) & 501 (13) & 163 (61) \\ H(4') & -283 (2) & 225 (2) & 260 (4) & 76 (12) \\ H(1') & -484 (2) & 74 (1) & -275 (3) & 38 (8) \\ H(2') & -342 (2) & 19 (2) & -90 (3) & 69 (11) \\ H(3') & -208 (3) & 99 (2) & 12 (4) & 73 (11) \\ H(4') & -283 (2) & 226 (1) & -110 (3) & 44 (8) \\ H(4a') & -306 (2) & 238 (1) & -356 (3) & 32 (7) \\ H1(5') & -189 (2) & 165 (2) & -412 (3) & 49 (9) \\ H2(5') & -222 (2) & 90 (1) & -360 (3) & 26 (7) \\ H1(6') & -286 (3) & 68 (2) & -750 (4) & 96 (14) \\ H2(61') & -200 (3) & 60 (2) & -699 (5) & 112 (18) \\ H3(61') & -213 (3) & 130 (2) & -695 (5) & 118 (17) \\ H1(71') & -437 (3) & 119 (2) & -855 (5) & 117 (18) \\ H2(71') & -520 (4) & 85 (3) & -794 (5) & 146 (19) \\ H1(8') & -443 (2) & 193 (2) & -292 (3) & 56 (8) \\ H(01') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -1374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -151 (3) & 203 (2) & -10 (5) & 107 (15) \\ \end{array}$ | C(61')           | -2490 (4)          | 954 (3)          | -6685 (5)           | 63                       |
| $\begin{array}{c} C(11') & -4730 (4) & 1244 (3) & -7862 (5) & 78 \\ C(8') & -4673 (3) & 1637 (2) & -5200 (4) & 51 \\ C(8a') & -4107 (2) & 1574 (2) & -3508 (3) & 40 \\ O(1') & -4148 (3) & 199 (1) & -3851 (3) & 49 \\ O(4') & -1440 (2) & 2046 (1) & -1162 (3) & 51 \\ H(1) & 299 (2) & 122 (1) & 326 (3) & 49 (8) \\ H(2) & 160 (2) & 53 (2) & 154 (4) & 67 (10) \\ H(3) & 12 (2) & 121 (2) & 68 (3) & 56 (9) \\ H(4) & 62 (2) & 242 (1) & 209 (3) & 35 (8) \\ H(4a) & 91 (2) & 239 (1) & 454 (3) & 32 (7) \\ H1(5) & -9 (2) & 145 (2) & 503 (3) & 63 (10) \\ H2(5) & 44 (2) & 85 (1) & 438 (3) & 36 (7) \\ H1(61) & 27 (4) & 98 (3) & 770 (6) & 167 (24) \\ H2(61) & 133 (4) & 61 (2) & 834 (6) & 135 (21) \\ H3(61) & 52 (4) & 26 (3) & 702 (6) & 151 (23) \\ H1(71) & 337 (3) & 84 (2) & 850 (4) & 95 (15) \\ H2(71) & 271 (3) & 115 (2) & 937 (4) & 87 (14) \\ H3(71) & 343 (3) & 169 (3) & 889 (5) & 127 (19) \\ H1(8) & 278 (2) & 235 (2) & 634 (3) & 72 (11) \\ H2(8) & 337 (2) & 165 (2) & 611 (3) & 73 (11) \\ H(8a) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(01)^{\bullet} & 247 (9) & 49 (6) & 501 (13) & 163 (61) \\ H(04) & -85 (2) & 235 (2) & 260 (4) & 76 (12) \\ H(1') & -484 (2) & 74 (1) & -275 (3) & 38 (8) \\ H(2') & -324 (2) & 19 (2) & -90 (3) & 69 (11) \\ H(4') & -283 (2) & 226 (1) & -110 (3) & 44 (8) \\ H(4a') & -306 (2) & 238 (1) & -356 (3) & 32 (7) \\ H1(5') & -189 (2) & 165 (2) & -412 (3) & 49 (9) \\ H2(5') & -222 (2) & 90 (1) & -360 (3) & 26 (7) \\ H1(61') & -286 (3) & 68 (2) & -750 (4) & 96 (14) \\ H2(61') & -200 (3) & 60 (2) & -609 (5) & 112 (18) \\ H3(61') & -121 (3) & 110 (2) & -855 (5) & 117 (18) \\ H2(71') & -437 (3) & 119 (2) & -855 (5) & 117 (18) \\ H2(71') & -514 (4) & 162 (3) & -823 (6) & 145 (27) \\ H3(61') & -214 (3) & 133 (2) & -547 (3) & 73 (10) \\ H(8a') & -443 (2) & 193 (2) & -292 (3) & 56 (8) \\ H(01') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -137 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -151 (3) & 203 (2) & -10 (5) & 107 (15) \\ \end{array} \right)$                                | C(7')            | -4084 (3)          | 1376 (2)         | -6224 (3)           | 45                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(T)             | -4730 (4)          | 1264 (3)         | -7862 (5)           | 78                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(8')            | -4673 (3)          | 1637 (2)         | -5200 (4)           | 51                       |
| $\begin{array}{ccccc} 0(1)' & -4148 (3) & 199 (1) & -3851 (3) & 49 \\ O(4') & -1440 (2) & 2046 (1) & -1162 (3) & 51 \\ H(1) & 299 (2) & 122 (1) & 326 (3) & 49 (8) \\ H(2) & 160 (2) & 53 (2) & 154 (4) & 67 (10) \\ H(3) & 112 (2) & 121 (2) & 68 (3) & 56 (9) \\ H(4) & 62 (2) & 242 (1) & 209 (3) & 35 (8) \\ H(4a) & 91 (2) & 239 (1) & 454 (3) & 32 (7) \\ H1(5) & -9 (2) & 145 (2) & 503 (3) & 63 (10) \\ H2(5) & 44 (2) & 85 (1) & 438 (3) & 36 (7) \\ H1(61) & 27 (4) & 98 (3) & 770 (6) & 167 (24) \\ H2(61) & 133 (4) & 61 (2) & 834 (6) & 135 (21) \\ H3(61) & 52 (4) & 26 (3) & 702 (6) & 157 (23) \\ H1(71) & 337 (3) & 84 (2) & 850 (4) & 95 (15) \\ H2(71) & 271 (3) & 115 (2) & 937 (4) & 87 (14) \\ H3(71) & 343 (3) & 169 (3) & 889 (5) & 127 (19) \\ H1(8) & 278 (2) & 235 (2) & 634 (3) & 72 (11) \\ H2(8) & 337 (2) & 165 (2) & 611 (3) & 73 (11) \\ H(8a) & 230 (2) & 220 (1) & 381 (3) & 38 (8) \\ H(01) & 306 (6) & 17 (4) & 443 (6) & 70 (18) \\ H(01)^{\bullet} & 247 (9) & 49 (6) & 501 (13) & 163 (61) \\ H(04) & -85 (2) & 235 (2) & 260 (4) & 76 (12) \\ H(1') & -484 (2) & 74 (1) & -275 (3) & 38 (8) \\ H(2') & -342 (2) & 19 (2) & -90 (3) & 69 (11) \\ H(4') & -208 (3) & 99 (2) & 12 (4) & 73 (11) \\ H(4') & -286 (3) & 68 (2) & -750 (4) & 96 (14) \\ H2(61') & -212 (3) & 130 (2) & -695 (5) & 118 (17) \\ H1(71') & -437 (3) & 119 (2) & -855 (5) & 117 (18) \\ H2(71') & -514 (4) & 162 (3) & -823 (6) & 145 (27) \\ H1(8') & -493 (2) & 217 (2) & -546 (3) & 26 (7) \\ H1(8') & -493 (2) & 217 (2) & -546 (3) & 26 (7) \\ H1(8') & -493 (2) & 217 (2) & -546 (3) & 59 (9) \\ H2(8') & -532 (3) & 133 (2) & -297 (3) & 56 (8) \\ H(01') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(01') & -115 (3) & 203 (2) & -10 (5) & 107 (15) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                         | C(8a')           | -4107(2)           | 1574 (2)         | -3508 (3)           | 40                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(1')            | -4148 (3)          | 199 (1)          | -3851 (3)           | 49                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O(4')            | -1440(2)           | 2046 (1)         | -1162(3)            | 51                       |
| H(2)160 (2)53 (2)154 (4)67 (10)H(3)12 (2)121 (2)68 (3)56 (9)H(4)62 (2)242 (1)209 (3)35 (8)H(4a)91 (2)239 (1)454 (3)32 (7)H1(5)-9 (2)145 (2)503 (3)63 (10)H2(5)44 (2)85 (1)438 (3)36 (7)H1(61)27 (4)98 (3)770 (6)167 (24)H2(61)133 (4)61 (2)834 (6)15 (21)H3(61)52 (4)26 (3)702 (6)151 (23)H1(71)337 (3)84 (2)850 (4)95 (15)H2(71)271 (3)115 (2)937 (4)87 (14)H3(71)343 (3)169 (3)889 (5)127 (19)H1(8)278 (2)235 (2)634 (3)73 (11)H2(8)337 (2)165 (2)611 (3)73 (11)H2(8)337 (2)165 (2)611 (3)163 (61)H(01)306 (6)17 (4)443 (6)70 (18)H(01)306 (6)17 (4)443 (6)70 (18)H(2')-342 (2)19 (2)-90 (3)69 (11)H3(3')-208 (3)99 (2)12 (4)73 (11)H(4')-206 (3)68 (2)-750 (4)96 (14)H(4')-306 (2)238 (1)-356 (3)32 (7)H1(5')-189 (2)165 (2)-412 (3)49 (9)H2(5')-222 (2)90 (1)-360 (3)26 (7)H1(61')-286 (3)68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H                | 299 (2)            | 122 (1)          | 326 (3)             | 49 (8)                   |
| H(3)12 (2)121 (2)68 (3)56 (9)H(4)62 (2)242 (1)209 (3)35 (8)H(4a)91 (2)239 (1)454 (3)32 (7)H1(5) $-9 (2)$ 145 (2)503 (3)63 (10)H1(5) $-9 (2)$ 145 (2)503 (3)63 (10)H2(5)44 (2)85 (1)438 (3)36 (7)H1(61)27 (4)98 (3)770 (6)167 (24)H2(61)133 (4)61 (2)834 (6)135 (21)H3(61)52 (4)26 (3)702 (6)151 (23)H1(71)337 (3)84 (2)850 (4)95 (15)H2(71)271 (3)115 (2)937 (4)87 (14)H3(71)343 (3)169 (3)889 (5)127 (19)H1(8)278 (2)235 (2)634 (3)72 (11)H2(8)337 (2)165 (2)611 (3)73 (11)H(28)337 (2)165 (2)611 (3)76 (12)H(1)-484 (2)74 (1) $-275 (3)$ 38 (8)H(21)-484 (2)74 (1) $-275 (3)$ 38 (8)H(2')-342 (2)19 (2) $-90 (3)$ 69 (11)H(3')-208 (3)99 (2)12 (4)73 (11)H(4')-286 (3)68 (2) $-750 (4)$ 96 (14)H2(61')-286 (3)68 (2) $-750 (4)$ 96 (14)H2(61')-286 (3)68 (2) $-750 (4)$ 96 (14)H2(61')-286 (3)68 (2) $-750 (4)$ 96 (14)H2(61')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H(2)             | 160 (2)            | 53 (2)           | 154 (4)             | 67 (10)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(3)             | 12 (2)             | 121 (2)          | 68 (3)              | 56 (9)                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H(4)             | 62 (2)             | 242 (1)          | 209 (3)             | 35 (8)                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H(4a)            | 91 (2)             | 239 (1)          | 454 (3)             | 32 (7)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(5)            | -9 (2)             | 145 (2)          | 503 (3)             | 63 (10)                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H2(5)            | 44 (2)             | 85 (1)           | 438 (3)             | 36 (7)                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H1(61)           | 27 (4)             | 98 (3)           | 770 (6)             | 167 (24)                 |
| H3(61)52 (4)26 (3)702 (6)151 (23)H1(71)337 (3)84 (2)850 (4)95 (15)H2(71)271 (3)115 (2)937 (4)87 (14)H3(71)343 (3)169 (3)889 (5)127 (19)H1(8)278 (2)235 (2)634 (3)72 (11)H2(8)337 (2)165 (2)611 (3)73 (11)H(8a)230 (2)220 (1)381 (3)38 (8)H(O1)306 (6)17 (4)443 (6)70 (18)H(O1)*247 (9)49 (6)501 (13)163 (61)H(04)-85 (2)235 (2)260 (4)76 (12)H(1')-484 (2)74 (1)-275 (3)38 (8)H(2')-342 (2)19 (2)-90 (3)69 (11)H(3')-208 (3)99 (2)12 (4)73 (11)H(4')-283 (2)226 (1)-110 (3)44 (8)H(4a')-306 (2)238 (1)-356 (3)32 (7)H1(5')-189 (2)165 (2)-412 (3)49 (9)H2(5')-222 (2)90 (1)-360 (3)26 (7)H1(61')-286 (3)68 (2)-750 (4)96 (14)H2(61')-200 (3)60 (2)-609 (5)112 (18)H3(61')-212 (3)130 (2)-695 (5)118 (17)H1(71')-514 (4)162 (3)-823 (6)145 (27)H3(71')-520 (4)85 (3)-794 (5)146 (19)H1(8')-493 (2)217 (2)-546 (3)59 (9)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H2(61)           | 133 (4)            | 61 (2)           | 834 (6)             | 135 (21)                 |
| H1(71)337 (3)84 (2) $850 (4)$ 95 (15)H2(71)271 (3)115 (2)937 (4)87 (14)H3(71)343 (3)169 (3)889 (5)127 (19)H1(8)278 (2)235 (2)634 (3)72 (11)H2(8)337 (2)165 (2)611 (3)73 (11)H(8a)230 (2)220 (1)381 (3)38 (8)H(01)306 (6)17 (4)443 (6)70 (18)H(01)*247 (9)49 (6)501 (13)163 (61)H(04)85 (2)235 (2)260 (4)76 (12)H(1')-484 (2)74 (1)-275 (3)38 (8)H(2')-342 (2)19 (2)-90 (3)69 (11)H(3')-208 (3)99 (2)12 (4)73 (11)H(4')-283 (2)226 (1)-110 (3)44 (8)H(4a')-306 (2)238 (1)-356 (3)32 (7)H1(5')-189 (2)165 (2)-412 (3)49 (9)H2(5')-222 (2)90 (1)-360 (3)26 (7)H1(61')-286 (3)68 (2)-750 (4)96 (14)H2(61')-210 (3)60 (2)-609 (5)112 (18)H3(61')-212 (3)130 (2)-695 (5)117 (18)H2(71')-514 (4)162 (3)-823 (6)145 (27)H3(71')-532 (3)133 (2)-547 (3)73 (10)H(8a')-443 (2)193 (2)-292 (3)56 (8)H(O1')-374 (8)13 (6)-400 (12)50 (53) <td>H3(61)</td> <td>52 (4)</td> <td>26 (3)</td> <td>702 (6)</td> <td>151 (23)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H3(61)           | 52 (4)             | 26 (3)           | 702 (6)             | 151 (23)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(71)           | 337 (3)            | 84 (2)           | 850 (4)             | 95 (15)                  |
| H3(71)343 (3)169 (3)889 (5)127 (19)H1(8)278 (2)235 (2)634 (3)72 (11)H2(8)337 (2)165 (2)611 (3)73 (11)H8(a)230 (2)220 (1)381 (3)38 (8)H(01)306 (6)17 (4)443 (6)70 (18)H(01)*247 (9)49 (6)501 (13)163 (61)H(04)-85 (2)235 (2)260 (4)76 (12)H(1')-484 (2)74 (1)-275 (3)38 (8)H(2')-342 (2)19 (2)-90 (3)69 (11)H(3')-208 (3)99 (2)12 (4)73 (11)H(4')-283 (2)226 (1)-110 (3)44 (8)H(4')-306 (2)238 (1)-356 (3)32 (7)H1(5')-189 (2)165 (2)-412 (3)49 (9)H2(5')-222 (2)90 (1)-360 (3)26 (7)H1(61')-286 (3)68 (2)-750 (4)96 (14)H2(61')-200 (3)60 (2)-609 (5)112 (18)H3(61')-212 (3)130 (2)-695 (5)118 (17)H1(71')-437 (3)119 (2)-855 (5)117 (18)H2(71')-514 (4)162 (3)-823 (6)145 (27)H3(71')-520 (4)85 (3)-794 (5)146 (19)H1(8')-493 (2)217 (2)-546 (3)59 (9)H2(8')-532 (3)133 (2)-547 (3)73 (10)H(8a')-443 (2)193 (2)-292 (3)56 (8) </td <td>H2(71)</td> <td>271 (3)</td> <td>115 (2)</td> <td>937 (4)</td> <td>87 (14)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H2(71)           | 271 (3)            | 115 (2)          | 937 (4)             | 87 (14)                  |
| H1(8) $278$ (2) $235$ (2) $634$ (3) $72$ (11)H2(8) $337$ (2) $165$ (2) $611$ (3) $73$ (11)H(8a) $230$ (2) $220$ (1) $381$ (3) $38$ (8)H(01) $306$ (6) $17$ (4) $443$ (6) $70$ (18)H(01)* $247$ (9) $49$ (6) $501$ (13) $163$ (61)H(04) $-85$ (2) $235$ (2) $260$ (4) $76$ (12)H(1') $-484$ (2) $74$ (1) $-275$ (3) $38$ (8)H(2') $-342$ (2) $19$ (2) $-90$ (3) $69$ (11)H(3') $-208$ (3) $99$ (2) $12$ (4) $73$ (11)H(4') $-283$ (2) $226$ (1) $-110$ (3) $44$ (8)H(4a') $-306$ (2) $238$ (1) $-356$ (3) $227$ (7)H1(5') $-189$ (2) $165$ (2) $-412$ (3) $49$ (9)H2(5') $-222$ (2) $90$ (1) $-360$ (3) $26$ (7)H1(61') $-286$ (3) $68$ (2) $-750$ (4) $96$ (14)H2(61') $-200$ (3) $60$ (2) $-699$ (5) $118$ (17)H1(71') $-437$ (3) $119$ (2) $-855$ (5) $117$ (18)H2(61') $-200$ (3) $60$ (2) $-699$ (5) $118$ (17)H1(71') $-437$ (3) $119$ (2) $-855$ (5) $117$ (18)H2(61') $-200$ (3) $133$ (2) $-547$ (3) $73$ (10)H(8a') $-493$ (2) $217$ (2) $-546$ (3) $59$ (9)H1(71') $-532$ (3) $133$ (2) $-547$ (3) $73$ (10)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H3(71)           | 343 (3)            | 169 (3)          | 889 (5)             | 127 (19)                 |
| H2(8) $337$ (2)165 (2) $611$ (3) $73$ (11)H(8a)230 (2)220 (1) $381$ (3) $38$ (8)H(O1) $306$ (6)17 (4) $443$ (6) $70$ (18)H(01)*247 (9)49 (6) $501$ (13)163 (61)H(04) $-85$ (2)235 (2)260 (4) $76$ (12)H(1') $-484$ (2) $74$ (1) $-275$ (3) $38$ (8)H(2') $-342$ (2)19 (2) $-90$ (3)69 (11)H(3') $-208$ (3)99 (2)12 (4) $73$ (11)H(4') $-283$ (2)226 (1) $-110$ (3)44 (8)H(4a') $-306$ (2)238 (1) $-356$ (3)32 (7)H1(5') $-189$ (2)165 (2) $-412$ (3)49 (9)H2(5') $-222$ (2)90 (1) $-360$ (3)26 (7)H1(61') $-286$ (3) $68$ (2) $-750$ (4)96 (14)H2(61') $-200$ (3) $60$ (2) $-695$ (5)118 (17)H1(61') $-212$ (3)130 (2) $-695$ (5)118 (17)H1(71') $-437$ (3)119 (2) $-855$ (5)117 (18)H2(71') $-514$ (4)162 (3) $-823$ (6)145 (27)H3(71') $-532$ (3)133 (2) $-547$ (3)73 (10)H(8a') $-443$ (2)193 (2) $-292$ (3)56 (8)H(O1') $-374$ (8)13 (6) $-400$ (12)50 (53)H(04') $-115$ (3)203 (2) $-10$ (5)107 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H1(8)            | 278 (2)            | 235 (2)          | 634 (3)             | 72 (11)                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2(8)            | 337 (2)            | 165 (2)          | 611 (3)             | 73 (11)                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H(8a)            | 230 (2)            | 220 (1)          | 381 (3)             | 38 (8)                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H(O1)            | 306 (6)            | 17 (4)           | 443 (6)             | 70 (18)                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H(O1)*           | 247 (9)            | 49 (6)           | 501 (13)            | 163 (61)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(O4)            |                    | 235 (2)          | 260 (4)             | 76 (12)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(1')            | -484 (2)           | 74 (1)           | -275 (3)            | 38 (8)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(2′)            | -342 (2)           | 19 (2)           | -90 (3)             | 69 (11)                  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(3′)            | -208 (3)           | 99 (2)           | 12 (4)              | 73 (11)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(4′)            | -283 (2)           | 226 (1)          | -110 (3)            | 44 (8)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(4a')           | -306 (2)           | 238 (1)          | -356 (3)            | 32 (7)                   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(5')           | -189 (2)           | 165 (2)          | -412 (3)            | 49 (9)                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2(5')           | -222 (2)           | 90(1)            | -360 (3)            | 26 (7)                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(61')          | -286 (3)           | 68 (2)           | -750 (4)            | 96 (14)                  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2(61')          | -200 (3)           | 60 (2)           | -609 (5)            | 112 (18)                 |
| $\begin{array}{ccccccc} H1(71') & -437 (3) & 119 (2) & -853 (5) & 117 (18) \\ H2(71') & -514 (4) & 162 (3) & -823 (6) & 145 (27) \\ H3(71') & -520 (4) & 85 (3) & -794 (5) & 146 (19) \\ H1(8') & -493 (2) & 217 (2) & -546 (3) & 59 (9) \\ H2(8') & -532 (3) & 133 (2) & -547 (3) & 73 (10) \\ H(8a') & -443 (2) & 193 (2) & -292 (3) & 56 (8) \\ H(O1') & -374 (8) & 13 (6) & -400 (12) & 50 (53) \\ H(O1')^{\bullet} & -464 (8) & 7 (7) & -464 (14) & 140 (53) \\ H(O4') & -115 (3) & 203 (2) & -10 (5) & 107 (15) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H3(61')          | -212(3)            | 130(2)           | -695 (5)            | 118 (17)                 |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(71')          | -437 (3)           | 119 (2)          | -855 (5)            | 11/(18)                  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2(71')          | -514 (4)           | 162 (3)          | -823 (6)            | 145 (27)                 |
| H1(8') $-493(2)$ $217(2)$ $-346(5)$ $39(9)$ H2(8') $-532(3)$ $133(2)$ $-547(3)$ $73(10)$ H(8a') $-443(2)$ $193(2)$ $-292(3)$ $56(8)$ H(O1') $-374(8)$ $13(6)$ $-400(12)$ $50(53)$ H(O1')* $-464(8)$ $7(7)$ $-464(14)$ $140(53)$ H(O4') $-115(3)$ $203(2)$ $-10(5)$ $107(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H3(71')          | -520 (4)           | 85 (3)           | -794(3)             | 140 (19)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H1(8')           | -493 (2)           | $\frac{21}{(2)}$ | -340 (3)            | JY (Y)<br>72 (10)        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2(8')           | -332(3)            | 103 (2)          | -347(3)<br>-302(2)  | 56 (2)                   |
| $H(O1')^* = -464(8) = 7(7) = -464(14) = 140(53)$<br>H(O4') = -115(3) = 203(2) = -10(5) = 107(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Pi(\delta a')$ | -443 (2)           | 133 (2)          | -292(3)<br>-400(12) | 50 (8)                   |
| H(O4') -115 (3) 203 (2) -10 (5) 107 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | -374(0)<br>-464(8) | 7 (7)            | -464 (14)           | 140 (53)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H(04')           | -115 (3)           | 203 (2)          | -10(5)              | 107 (15)                 |

\* H atoms bonded to O(1) and O(1') are in positions of 50% occupancy; asterisks denote additional H positions arising from the disorder.



Fig. 1. Stereodiagram of a type A molecule of 6,7-dimethyl-4aβ.5.8.8aβ-tetrahydronaphthoquin-1α,4α-diol. Thermal ellipsoids are at 50% probability.

The structure consists of two crystallographically independent molecules, A (Fig. 1) and B, per asymmetric unit, hydrogen bonded to each other through  $O(4')-H\cdots O(4)$  interactions. The molecules are related by a pseudo twofold rotation axis approximately parallel to **b** and passing through the mid-point of O(4)and O(4'). Additional hydrogen bonds, linking neighboring asymmetric units, result in a threedimensional bonding network thus increasing the packing energy and rigidity of the structure. Each asymmetric unit experiences six hydrogen bonds.

The half-occupied positions of the H atoms bonded to O(1) and O(1') are of course not well defined, but do correspond to a reasonable hydrogen-bonding arrangement with discrete units of four molecules about a (statistical) center of symmetry:

These units are linked by infinite chains of  $O(4) \cdots O(4')$  hydrogen bonds (Table 2).

The conformation adopted by each molecule consists of a half-chair cyclohexene ring *cis*-fused to a half-chair cyclohexenediol moiety. Although the gross molecular conformations are the same for both molecules in the asymmetric unit, detailed differences are noticeable. Bond lengths and angles are given in Table 2. Deviations of up to  $4 \cdot 2^{\circ}$  are observed in corresponding (heavy-atom) angles involving O atoms in A and B, and may be attributed to the effects of hydrogen bonding. Bond lengths and other bond angles do not differ significantly between molecules. Examination of the torsion angles indicates further minor conformational differences.

The OH configurations in each molecule are both *anti* with respect to the bridgehead H atoms. This confirms the expected major isomer formed by the reduction of the 1,4-dione by NaBH<sub>4</sub>, the method by which the present compound was prepared.

Despite the favorable geometry for a H-abstraction reaction involving the upper H on C(5) (Fig. 1) and the C(3) atom, such a reaction does not proceed photochemically (at  $\geq$ 350 nm) due to the lack of a suitable chromophore. Bonds joining atoms C(1), C(2), C(3), C(4), C(4a) and C(5), and similarly C(1'), C(2'), C(3'), C(4'), C(4a') and C(5'), are all shorter than accepted values (Sutton, 1965). This may be due to slight hybridization deviations from the formal  $sp^3$  and  $sp^2$  states. The larger than normal endocyclic bond angles at these centers are consistent with this rationale.

Comparison with tetrahydronaphthoquin- $4\alpha$ -ols. The present molecular conformations are similar to the least-energy conformations predicted by Bucourt & Hainaut (1965) and found in previously studied naphthoquinols (Greenhough & Trotter, 1981; Secco & Trotter, 1982). Many of the structural trends noted in

 

 Table 2. Bond distances (Å), bond angles (°) and hydrogen-bonding geometry

|                     | Molecule A | Molecule B |
|---------------------|------------|------------|
| C(1)-C(2)           | 1.493 (4)  | 1.493 (4)  |
| C(1)-C(8a)          | 1-539 (4)  | 1-529 (4)  |
| C(1) - O(1)         | 1.426 (4)  | 1.428 (4)  |
| C(2) - C(3)         | 1.309 (4)  | 1.316 (4)  |
| C(3) - C(4)         | 1.485 (4)  | 1.491 (4)  |
| C(4)-C(4a)          | 1.519 (4)  | 1.513 (4)  |
| C(4)-O(4)           | 1.435 (3)  | 1.439 (3)  |
| C(4a)C(5)           | 1.514 (4)  | 1.515 (4)  |
| C(4a)-C(8a)         | 1.525 (4)  | 1.536 (4)  |
| C(5)-C(6)           | 1.513 (4)  | 1.507 (4)  |
| C(6)-C(61)          | 1.513 (5)  | 1.504 (4)  |
| C(6)-C(7)           | 1.324 (4)  | 1.323 (4)  |
| C(7)–C(71)          | 1.508 (5)  | 1.513 (5)  |
| C(7)-C(8)           | 1.508 (4)  | 1.504 (4)  |
| C(8)-C(8a)          | 1.523 (4)  | 1.520 (4)  |
| C(2)-C(1)-C(8a)     | 112.4 (3)  | 112.7 (3)  |
| C(2)-C(1)-O(1)      | 109.6 (3)  | 107.7 (3)  |
| C(8a)-C(1)-O(1)     | 112.3 (3)  | 115.1 (2)  |
| C(1)-C(2)-C(3)      | 124.3 (4)  | 123.6 (3)  |
| C(2)-C(3)-C(4)      | 122.9 (3)  | 123.5 (3)  |
| C(3)-C(4)-C(4a)     | 111-4 (3)  | 111.8 (3)  |
| C(3)-C(4)-O(4)      | 107-3 (3)  | 111-5 (3)  |
| C(4a)-C(4)-O(4)     | 114.4 (2)  | 110-2 (2)  |
| C(4)-C(4a)-C(5)     | 114.4 (3)  | 114.2 (3)  |
| C(4)-C(4a)-C(8a)    | 108-6 (2)  | 108.8 (2)  |
| C(5)-C(4a)-C(8a)    | 111 0 (2)  | 110.7 (2)  |
| C(4a) - C(5) - C(6) | 114-2 (3)  | 114.0 (3)  |
| C(5)-C(6)-C(61)     | 113-2 (4)  | 113.7 (3)  |
| C(5)-C(6)-C(7)      | 122-4 (3)  | 122.5 (3)  |
| C(61)-C(6)-C(7)     | 124.5 (4)  | 123.8 (3)  |
| C(6)-C(7)-C(71)     | 124.3 (4)  | 124.0 (4)  |
| C(6)-C(7)-C(8)      | 122.4 (3)  | 122.3 (3)  |
| C(71)–C(7)–C(8)     | 113-3 (4)  | 113.6 (4)  |
| C(7)-C(8)-C(8a)     | 114.0 (3)  | 114.5 (3)  |
| C(1)-C(8a)-C(4a)    | 113.6 (3)  | 113.4 (2)  |
| C(1)-C(8a)-C(8)     | 112.7 (3)  | 113.3 (3)  |
| C(4a)-C(8a)-C(8)    | 110-3 (3)  | 109.5 (3)  |

Hydrogen-bonding geometry (distances in Å, angles in deg)

|                                                               | O-H       | н…о       | 0–H…0    |
|---------------------------------------------------------------|-----------|-----------|----------|
| $O(4')(x,y,z) - H \cdots O(4)(x,y,z)$                         | 0.94 (4)  | 1.88 (4)  | 176 (3)  |
| $O(4)(x,y,z) - H \cdots O(4')(x,\frac{1}{2}-y,\frac{1}{2}+z)$ | 0.90 (3)  | 1.93 (3)  | 169 (3)  |
| $O(1)(x,y,z) - H \cdots O(1')(-x,-y,-z)$                      | 0.93 (9)  | 1.87 (9)  | 158 (5)  |
| $O(1')(x,y,z) - H \cdots O(1)(-x,-y,-z)$                      | 0.63 (11) | 2.16(12)  | 159 (12) |
| $O(1')(x,y,z) - H^* \cdots O(1')(-x-1,-y,-z-1)$               | 0.86 (10) | 1.89 (10) | 170 (12) |

these past studies are also observed in the current diol compound. Like the other naphthoquinols, the *cis*-fused rings in the diol molecules form three approximate planes – two planes defined by each of the double bonds [C(1), C(2), C(3), C(4); and C(5), C(6), C(7), C(8)] are almost perpendicular to each other (with a dihedral angle of 96°) and each of these planes subtends an angle of approximately 141° with respect to the third plane containing atoms C(4)-C(4a)-C(8a)-C(8) [and similarly C(4')-C(4a')-C(8a')-C(8') in the other molecule].

Since the molecules in the asymmetric unit are very similar, structural features and values for B molecules will be recorded in square brackets following the corresponding quantities for the A molecules.

Ring twist, which is strictly defined as the H(4a)-C(4a)-C(8a)-H(8a) torsion angle  $\{-60 \ (3)^{\circ} \ [-58 \ (2)^{\circ}]\}$ , is also described to a good approximation by the more accurately determined C(1)-C(8a)-C(4a)-C(5) torsion angle of  $69 \cdot 4 \ (3)^{\circ}$  [ $68 \cdot 5 \ (3)^{\circ}$ ]. The latter torsion angles are slightly larger in the present structures than in any other  $4\alpha$ -naphthoquinol studied in the series, probably as a result of crowding of the pseudo-axial O(1) substituent.

The C(6)=C(7) bond length of 1.324 (4) Å [1.323 (4) Å] is not significantly longer than that in similarly substituted tetrahydro-1-naphthoquin-4 $\alpha$ -ol derivatives (Greenhough & Trotter, 1981; Secco & Trotter, 1982); the increased endocyclic angles around C(6) and C(7) in the present structure follow the previously noted trend of internal-angle enlargement accompanying increased substitution at these centers. The C(5)-C(6) and C(7)-C(8) bonds are longer in the diol than in the unsubstituted tetrahydronaphthoquinol, as expected on the basis of previous trends observed in the naphthoquinols with methyl substituents at C(6) and C(7).

We thank the Natural Sciences and Engineering Research Council of Canada for financial support and the University of British Columbia Computing Centre for assistance. We are grateful to J. R. Scheffer and Y. F. Wong for crystals.

#### References

- BUCOURT, R. & HAINAUT, D. (1965). Bull. Soc. Chim. Fr. pp. 1366-1378.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- GREENHOUGH, T. J. & TROTTER, J. (1981). Acta Cryst. B37, 126-132.
- JOHNSON, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- McDowell, C. A., NAITO, A., SCHEFFER, J. R. & WONG, Y. F. (1981). Tetrahedron Lett. 22, 4779–4782.
- MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMAIN, G. & DECLERCQ, J. P. (1980). MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- SECCO, A. S. & TROTTER, J. (1982). Acta Cryst. B38, 2190-2196.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SUTTON, L. E. (1965). Editor. Tables of Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. No. 18. London: The Chemical Society.

Acta Cryst. (1983). C39, 128-131

# Structures of Free Radical Salts and Complexes. XV.\* 1,2,4-Trimethylpyridinium 7,7,8,8-Tetracyano-*p*-quinodimethanide (1:2), $C_8H_{12}N^+.2C_{12}H_4N_4^{\frac{1}{2}-}$

By P. J. RIZKALLAH AND S. C. WALLWORK

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England

## and A. Graja

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179 Poznań, Poland

(Received 10 May 1982; accepted 13 September 1982)

Abstract. MDMP<sup>+</sup> (TCNQ)<sub>2</sub><sup>-</sup>,  $M_r = 530.55$ , monoclinic,  $P2_1/c$ , a = 13.796 (1), b = 12.889 (1), c = 7.846 (2) Å,  $\beta = 92.18$  (1)°, U = 1394.1 (5) Å<sup>3</sup>. Z = 2,  $D_m = 1.26$  (1),  $D_c = 1.264$  Mg m<sup>-3</sup>, Cu Ka,  $\lambda = 1.5418$  Å,  $\mu = 0.656$  mm<sup>-1</sup>, F(000) = 550. R = 0.0613for 1110 significant reflections  $[I > 3\sigma(I)]$ . The TCNQ's are stacked plane-to-plane, in groups of two, with no direct overlap between adjacent pairs. Within the pairs, there is a favourable exocyclic-double-bondquinonoid-ring overlap of adjacent molecules, with

0108-2701/83/010128-04\$01.50

short mean perpendicular distances of  $3 \cdot 20$  (2) Å. The cation appears to occupy at random two slightly separated centrosymmetrically related positions.

Introduction. The title substance shows an interesting anomaly in the temperature dependence of the microwave conductivity, which is not shown in the d.c. conductivity measurements (Swietlik, Przybylski & Graja, 1981). As a possible aid to the explanation of this phenomenon, the room-temperature crystal structure has been determined.

01/83/010128-04\$01.50 © 1983 J

© 1983 International Union of Crystallography

<sup>\*</sup> Part XIV: Ashwell & Wallwork (1979).